砷化镓晶体在连续 CO₂ 激光作用下的 三阶非线性系数

李再光 程祖海 张永方 李同宁 (华中工学院激光研究所)

提 要

用千瓦级连续 CO2 激光作光源,得到复合型砷化镓材料的三阶非线性系数为8.3×10⁻⁷esu,同时根据这种材料的杂质能级对其三阶非线性系数进行计算,所得结果与实验相符。

一、引 言

采用相位共轭谐振腔来改善激光器的光学质量,近年来已引起人们的重视。它需要用 相位共轭镜(POM)。因此,找出高共轭反射系数 *B*。的光学材料作为 POM,是相位共轭腔走 向实用化时首先要解决的问题。

半导体的非线性机理有多种⁽¹⁾。主要为束缚电子的非简谐运动,载流子的非线性运动, 以及由于能级跃迁所产生的非线性。人们可以采用不同的半导体材料和在半导体材料中渗 杂来获得不同的三阶非线性系数 $\chi^{(3)}$ (以下简称 $\chi^{(3)}$)。几种常见的半导体,如 InAs、InSb、GaAs、Ge、Si和 HgOdTe等的 $\chi^{(3)}$ 已有许多研究。其中 GaAs在10.6 μ m 激光作用下,由 导带非抛物型产生的 $\chi^{(3)}$ 为8×10⁻¹¹ esu,由束缚电子的非简谐运动产生的 $\chi^{(3)}$ 为1.2× 10⁻¹¹ esu,由价带中能级跃迁产生的 $\chi^{(3)}$ 为4×10⁻¹¹ esu。由于 GaAs的禁带宽度为1.43 eV, 相当于 0.8 μ m 光子的能量,10.6 μ m 光子的能量不足以产生由价带到导带的跃迁。因此 在 10.6 μ m 光子作用下,GaAs 材料的三阶非线性效应不能用阶带到导带之间的能级跃迁 来解释。禁带中杂质与杂质、杂质与价带之间的能级差可小于 10.6 μ m 光子的能量。选用 不同的杂质,在 10.6 μ m 激光作用下,可以产生不同的三阶非线性效应,只不过这方面的报 道还不多见。我们采用复合型 GaAs 材料作简并四波混频中的非线性介质,实验得到在 10.6 μ m 激光作用下的 $\chi^{(3)}$ 为8.3×10⁻⁷ esu,与理论计算的 3.4×10⁻⁷ esu 相近。

二、简并四波混频实验方案的选择

简并四波混频可以自动满足相位匹配条件。利用简并四波混频研究复合型 GaAs 材料 的 χ⁽³⁾,可以避免晶体的晶轴取向和折射率随温度变化等给实验带来的困难。实验中,选用 一片一侧镀增透膜,另一侧镀反射率为 85% 增反膜的复合型 GaAs 镜片,兼非线性介质和

收稿日期: 1984年7月10日; 收到修改稿日期: 1985年3月26日

全反射镜于一体,构成图1所示转换增益较高的一种简并四波混频相共轭镜的方案。

由于增反膜直接镀在 GaAs 镜片的一侧,不需要另外的全反射镜。这样,不仅可以避免 非线性材料与全反射镜之间多次反射产生寄生信号激励的可能性,而且有利于提高共轭反 射率 R_{eo} 、为了满足复合型 GaAs 材料三阶非线性效应阈值泵浦功率的要求,在实验方案中, 还采用了图2 所示的将泵浦激励和信号激励分别通过 M4 和 M2, 都聚焦到非线性晶体上的 方案。但探测光的光斑直径较泵浦光的光斑直径为大,使得在调节相位共轭镜 M。和泵浦 光聚焦透镜 M_4 的距离 D 时, 泵浦光始终处于探测光的包围之中。由于 M_5 和 M_4 平行同 轴地安装在同一光具座上, M4 位置的变化, 只是 D 的大小发生变化, 泵浦光和探测光的相 对几何角度仍然保持不变。

Fig. 1 DFWM in recombinationtype gallium arsenide

图 2 千瓦级连续 CO2 激光简并四波混频 相位共轭实验方案布置图 Fig. 2 Schematic diagram of DFWM in recombinationtype gallium arsenide using a CW CO₂ laser

三、数据处理及误差分析

1. 实验数据的数学处理

如图 2 所示,连续 OO2 激光器多模输出光束,经开槽 10% 的斩光器 R 和分束镜 M1后, 约 85% 的激光输出功率作为 POM 的泵 浦光, 15% 作为探测光。 泵浦光和探测光分别经f= 100 mm 和 f=1000 mm 的 M₄ 和 M₂ 聚焦 到待 测复合 GaAs 非线性材料 M5 上。在探测光路 中, 置入T=42%的分束镜 Ms, 使共轭光和探 测光分别部分地反射到功率计T1和T2上,以测 量其功率值。 S_1 、 S_2 、 S_3 为挡光光阑, P_1 、 P_2 为 挡光耐火砖。改变 M4 的位置,可以得到共轭光 功率 P。和共轭反射率 R。与泵浦光功率密度 I, 的关系。

如图3所示,随着 M4的位置变化,非线性晶 体中泵浦光和探测光相互作用区的大小也有所变

化。我们用有效探测光反映这种变化。定义有效探测光为:

$$P_{\pi \times} = P_{\pi} \cdot \underbrace{\frac{1}{2} \oplus \mathbb{Z}}{\frac{1}{2} \oplus \mathbb{Z}} = P_{\pi} \cdot \frac{d_1^2}{d_2^2}, \qquad (1)$$

报

在图1所示的四波混频方案中,非线性材料的共轭反射率 R_o为:

$$R_{o} \equiv G_{o} = \frac{A_{1}^{2} - (0)/C_{1} - (0)}{A_{1}^{2} + (0)/C_{1} + (0)} = \frac{A_{1}^{2} - (0)}{A_{2}^{1} + (0)} = \frac{P_{o}}{P_{\# *}}$$
(2)

考虑到分束镜 M₃ 透过率 T 的作用, 功率计 T₁和 T₂ 所测量的分别为共轭光和探测光的部分功率值。经过推导,非线性材料的共轭反射率 **B**₆为:

$$R_{o} = \frac{P_{T_{1}} \cdot d_{2}^{2}}{P_{T_{1}} \cdot T_{3} \cdot d_{1}^{2}},$$
(3)

式中 P_{T_1} 和 P_{T_2} 分别为 T_1 和 T_2 的实验读数值, d_1 为泵浦光在非线性晶体中的光斑直径, d_2 为探测光斑直径, T_3 为 M_3 的透过率。

根据图2简并四波混频装置的实验测量数据,利用(3)式计算得到的复合GaAs材料的 共轭反射率 R_o如表1和图4 所示。

Table 1 Experimental data and calculated results of DFWM

D(mm)	$d_1(\text{mm})$	$d_2(\mathrm{mm})$	$I_p(W/cm^2)$	$P_{T_1}(\mathbf{W})$	$P_{T_2}(\mathbf{W})$	$R_c(\%)$
85	4.2	8	$1.23 imes 10^4$	0.14	12.6	9.6
83	4.6	8	0.81×10^{4}	0.12	13.8	7.5
82	4.8	8	0.71×10^{4}	0.125	13.2	6.3
81	5.0	8	0.66×10^4	0.135	13.8	6.0
80	5.2	8	0.635×10^{4}	0.13	13.8	5.4
70	7.2	8	0.32×10^{4}	0.12	13.2	2.7

in recombination-type gallium arsenide

从图 4 中可以看出,当 $I_{g}>1.23\times10^{4}$ W/cm² 时,复合 GaAs 材料在 10.6 μ m 连续 CO₂ 激光作用下的共轭反射率 R_{o} 值逐渐趋于饱和,利用 (4)式^[2,3]和我们实验得到的共轭反射率

pump intensity

 $R_{o} = \frac{1024\pi^{4}\omega^{2}I_{1}I_{i}|\chi^{(3)}|^{2}L^{2}}{n^{4}c^{4}}, \qquad (4)$

 R_o 值,可以计算出复合 GaAs 材料的 $\chi^{(3)}$:

式中 ω 为激光的角频率, I_1 和 I_2 为方向相反的泵浦 功率密度, $I_2=0.85I_1$, n 为复合 GaAs 的折射率, n=3.37, c 为光速, L 为有效作用长度, 取 L=0.55om。当 $R_c=9.6\%$ 时, 计算所得的复合型 GaAs 材 料的 $\chi^{(3)}$ 为 8.3×10^{-7} esu, 比前述三种机理产生的 三阶非线性系数提高了两个数量级。可以认为, 这 样高的三阶非线性系数, 归因于复合 GaAs 材料 禁带中杂质与价带或杂质与杂质之间的能级跃 迁。

2. 实验结果的误差分析

考虑到(3)式, GaAs 材料三阶非线性系数 x⁽³⁾ 的计算式(4)可表示为:

$$|\chi^{(3)}| = \sqrt{\frac{P_{T_1} \cdot d_2^2}{P_{T_1} \cdot T_3 \cdot d_1^2}} \cdot \frac{n^4 c^4}{1024 \pi^4 \omega^2 I_1 I_2 L^2} \, . \tag{5}$$

在假定 P_{T_1} 、 P_{T_2} 、 d_1 、 d_2 、 T_3 、 I_1 、 I_2 和 L 都是在测量无关的量的条件下,依据无关观测量 χ_1 , χ_2 , χ_3 , …, χ_N 之积 $y = \prod_{i=1}^{n} \chi_i$ 的相对误差传播公式⁽⁴⁾:

$$\frac{\sigma(y)}{\langle y \rangle} \Big)^2 \cong \sum_{i} \left(\frac{\sigma(\chi_i)}{\langle \chi_i \rangle} \right)^2 \,. \tag{6}$$

实验得到的复合型 GaAs 材料 |χ⁽³⁾| 的测量误差为:

$$\left(\frac{\sigma(|\chi^{(3)}|)}{\langle|\chi^{(3)}|\rangle}\right)^{2} = \left(\frac{\sigma(P_{T_{1}})}{\langle P_{T_{1}}\rangle}\right)^{2} + \left(\frac{\sigma(P_{T_{1}})}{\langle P_{T_{2}}\rangle}\right)^{2} + \left(\frac{\sigma(d_{1})}{\langle d_{1}\rangle}\right)^{2} + \left(\frac{\sigma(d_{2})}{\langle d_{2}\rangle}\right)^{2} + \left(\frac{\sigma(I_{2})}{\langle I_{2}\rangle}\right)^{2} + \left(\frac{\sigma(I_{2})}{\langle I_{2}\rangle}\right)^{2} + \left(\frac{\sigma(L)}{\langle L\rangle}\right)^{2}, \quad (7)$$

在实验条件下,根据有关测量仪器的本身测量精度和测量方法,我们取共轭光功率 P_{T} ,和信号光功率 P_{T} ,的测量相对误差为 5%,泵浦入射功率密度 I_1 及其反射光功率密度 I_2 的测量相对误差为 10%,分束镜 M_3 的透过率 T_8 的测量相对误差为 1%,实验复合 GaAs 镜片的有效作用长度 L 的测量相对误差为 1%。泵浦入射和信号激励光的焦点光斑 直 径 d_1 和 d_2 的测量相对误差较大,它们是根据焦点光斑在有机玻璃上的烧孔直径所测量得到的。由于强光对有机玻璃的气化作用,一般在有机玻璃上的烧孔直径将大于光束实际光斑的尺寸, d_1 和 d_2 的测量相对误差估计可达 30% 以上。根据以上各测量量相对误差的大小,利用(7)式计算得到的复合 GaAs 晶体的 $|x^{(3)}|$ 的测量相对误差约为 45% 左右。

四、理论计算与实验结果的比较

在上述简并四波混频实验中,我们选用了复合型 GaAs 作为相位共轭镜 POM。在制备 复合型 GaAs 晶体时,为了得到 $\rho=10^7\sim10^9 \Omega \cdot \text{cm}$ 的本征电阻率,掺入了深受主铬和深施 主氧^[53],从文献[6]可知受主铬和施主氧之间的能级差为 0.07 eV,相当于 17.7 μ m 波长,受

主锰与价带之间的最小能差为0.096 eV,相当 于12.9 μm 波长。在10.6 μm 激光作用下,将 优先产生受主锰与价带之间的能级跃迁。

我们用红外分光光度计测量复合型 GaAs 镜片的透过率曲线时,看到了波长为12.9μm 和17.7μm 处的两个吸收峰,如图5所示。这 一事实表明,复合型 GaAs 材料中杂质与杂质, 杂质与价带之间,可以吸收10.6μm的CO₂激 光而产生能级跃迁,导致相当高的三阶非线性 效应。在我们实验中使用的多模CO₂激光束, 其横向模式分布高达十数阶,因而其远场光**斑** 横向分布与单色平面波的均匀横向强度分布十

分接近。为此,在多模连续 OO₂ 激光作用下,复合型 GaAs 材料禁带中杂质与杂质、杂质与 价带之间的能级跃迁对 χ⁽³⁾ 的贡献,可以近似地用单色平面波理论的公式来计算^[1]。

$$\chi^{(3)} = -\frac{\eta \alpha n c e^2 \tau}{8 \pi \hbar m_{eh}^* \cdot \omega^3} \left[\frac{\omega^2}{\omega^2 g - \omega^2} \right], \tag{8}$$

式中 η 为每吸收一个光子所产生的电子-空穴对,取 $\eta=1, \alpha$ 为 GaAs 的吸收系数,取 $\alpha=0.02 \text{ cm}^{-1}$, n为 GaAs 的折射率, n=3.37, c为光速, e为电子电荷, m_{**}^* 为电子-空穴对 等效质量,取 $m_{**}^*=0.12$ 电子质量, ω 为激光角频率, ω_0 为与能差相应的角频率,取能差为 0.096 eV,则 $\hbar\omega_0 = E_0 = 0.096 \text{ eV}$, τ 为载流子的总寿命,且

$$\tau = \frac{\tau_D \tau_R}{(\tau_D + \tau_R)} = 5.4 \times 10^{-9} \text{ esu},$$

τ_D 为双极扩散时间常数, τ_R 为等离子体区电子-空穴对复合时间常数。

经过计算,得到复合型 GaAs 材料在连续 CO₂ 激光作用下的 χ⁽³⁾ 为 **3.4**×10⁻⁷ esu, 与实 验得到的 **8.3**×10⁻⁷ esu 结果相近。

本文的实验是在美国俄亥俄州立大学徐雄教授建议下进行的,在此谨表感谢。

参考文献

- [1] B. K. Jain; Opt. Engineering, 1982, 21, No. 2 (Mar), 199.
- [2] A. Yariv, D. M. Paper; Opt. Lett., 1977, 1, No. 1 (Jan), 6.
- [3] R. W. Hellwarth; J. Opt. Sec. Am., 1977, 67, No. 1 (Jan), 1.
- [4] 李惕碚;《实验的数学处理》,(科学出版社,1980),104.
- [5] 李光华,张国利;《激光》,1982,19, No. 3 (Mar), 147.
- [6] S. M. Sze, J. C. Irriv; Solid State Elect., 1968, 11, No. 6 (Jun), 599.

The third-order nonlinear susceptibility of gallium arsenide under irradiation of CW CO₂ laser

LI ZAIGUANG CHENG ZUHAI ZHANG YONGFANG AND LI TONGNIN (Laser Institute, Huashong University of Science and Technology)

(Received 10 July 1984; revised 26 March 1985)

Abstract

The third-order succeptibility of recombination-type semiinsulating gallium arsenide was measured to be 8.3×10^{-7} esu with a multi-kW CW CO₂ laser. The value is in good agreement with the result calculated from the impurity energy levels of this material.